FAST MULTIPOLE BOUNDARY ELEMENT METHOD FOR THREE DIMENSIONAL ELECTROMAGNETIC SCATTERING PROBLEM

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation.

The development of a fast multipole method (FMM) accelerated iterative solution of the boundary element method (BEM) for the Helmholtz equations in three dimensions is described. The FMM for the Helmholtz equation is significantly different for problems with low and high kD (where k is the wavenumber and D the domain size), and for large problems the method must be switched between levels of th...

متن کامل

An adaptive fast multipole boundary element method for three-dimensional potential problems

An adaptive fast multipole boundary element method (FMBEM) for general three-dimensional (3-D) potential problems is presented in this paper. This adaptive FMBEM uses an adaptive tree structure that can balance the multipole to local translations (M2L) and the direct evaluations of the near-field integrals, and thus can reduce the number of the more costly direct evaluations. Furthermore, the c...

متن کامل

Adaptive fast multipole boundary element method for three-dimensional half-space acoustic wave problems

A new adaptive fast multipole boundary element method (BEM) for solving 3-D half-space acoustic wave problems is presented in this paper. The half-space Green’s function is employed explicitly in the boundary integral equation (BIE) formulation so that a tree structure of the boundary elements only for the boundaries of the real domain need to be applied, instead of using a tree structure that ...

متن کامل

A fast multipole boundary element method for 2D viscoelastic problems

A fast multipole formulation for 2D linear viscoelastic problems is presented in this paper by incorporating the elastic–viscoelastic correspondence principle. Systems of multipole expansion equations are formed and solved analytically in Laplace transform domain. Three commonly used viscoelastic models are introduced to characterize the time-dependent behavior of the materials. Since the trans...

متن کامل

Parallel Fast Multipole Boundary Element Method for Crustal Dynamics

Crustal faults and sharp material transitions in the crust are usually represented as triangulated surfaces in structural geological models. The complex range of volumes separating such surfaces is typically three-dimensionally meshed in order to solve equations that describe crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We show here how the Boundary Eleme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computational Materials Science and Engineering

سال: 2012

ISSN: 2047-6841,2047-685X

DOI: 10.1142/s2047684112500388